Mitigation Costs Method Description

June 3, 2011

Mitigation Cost Methods for FS

- Cost development for FS alternatives analysis includes costs for potential compensatory mitigation
- Preliminary estimates of Clean Water Act (CWA) Section 404 compensatory mitigation are made using the LWG's mitigation matrix framework
 - Using LWG-derived functional habitat values and National Marine Fisheries Service (NMFS) relative habitat values

Matrix Development

- Matrix uses habitat values to compare existing conditions to proposed conditions (i.e., after remediation) within the same area
 - Functional Habitat Values are based on habitat functions as determined by physical indicators that are impacted by remedial actions
 - Relative Habitat Values are based on "Expert Panel" table of Chinook relative habitat values developed for Natural Resource Damage (NRD) purposes and updated for ESA species
- Difference between proposed and existing values results in either a mitigation credit or debit

WILLAMETTE GROUP

Matrix Values

- Note that the Functional Habitat Values are a form of Relative Habitat Value approach
- The Functional Habitat Value approach accounts for the variability in habitat type using factors such as:
 - Substrate
 - Slope
 - Type and percent of vegetative cover
- This approach could be more detailed at the implementation stage when it can be used to more accurately assess mitigation needs

Mitigation Determination

Completed on an SMA level

OWER WILLAMETTE GROUP

- Acres of mitigation = [(Proposed Habitat Value – Existing Habitat Value) * Acres of Impact]
 - Functional Habitat mitigation determination acreage given a +/- 30% range for planning purposes
- Resulting acres of mitigation refers to:
 - Functional Habitat Value Approach: Acres of high quality functional habitat (i.e., off-channel, shallow water/active channel margin [ACM] with sand/gravel substrates and shoreline complexity)
 - Relative Habitat Value Approach: Acres of an "ideal" habitat type that is lacking in the system (i.e., similar to above)

Mitigation Costs

 On-site (i.e., within Portland Harbor) costs of mitigation per acre: \$1.0 to \$2.0 Million (2010 dollars)

- Based on professional mitigation experience in industrial areas of the Pacific Northwest
- Assumes creation of ACM and shallow water habitat from excavating existing upland; assumes all excavated material is not contaminated
- Includes restoration construction, engineering design work, permitting, project and construction management, long-term monitoring and maintenance (10 years), and contingencies

Mitigation Costs

- Off-site costs of mitigation per acre: \$0.3 to \$0.6 million
 - More rural areas outside of Portland Harbor
 - Costs based on professional mitigation experience in nonindustrial areas of the Pacific Northwest

 Assumes creation of ACM and shallow water habitat from excavating in area outside of Portland Harbor

Mitigation Cost Range

- Cost estimate derived for each Sediment Management Area (SMA) as a range for planning purposes
- Uses the greatest to least total debits for each methods, and highest and lowest estimated per acre cost of mitigation

Hypothetical SMA 13 Alternative E Example

Alternative E	
E-r	E-i
Removal of 2.4 to 3.2 million cy over 130 acres; in-situ engineered capping with large rock over 12 acres; disposal in CDFs and upland facilities	Removal of 1.2 to 1.6 million cy over 76 acres; in-situ capping with carbon/sand layer mix and large rock (over wave zone) over 80 acres; disposal in CDFs and upland facilities
Hyp. SMA 13 E-r (5.9 acres)	Hyp. SMA 13 E-i (5.9 acres)
Removal of approximately 92,000 cy of material over 5.9 acres	Engineered cap (large rock) over approximately 0.52 acres; in-situ treatment over 5.38 acres

Example: Habitat Determination

SMA 13	Existing acres (predominant substrate)	E-r acres (predominant substrate)	E-i acres (predominant substrate)
ACM	0.17 (riprap)	0.02 (riprap)	0.50 (riprap)
Shallow 0-10	1.42 (silt/sand)	0.32 (sand/gravel)	1.11 (sand/gravel)
Shallow 10-20	1.66 (silt/sand)	1.71 (sand/gravel)	1.65 (sand/gravel)
Deep 20+	2.65 (silt/sand)	3.86 (sand/gravel)	2.64 (sand/gravel)

Mitigation Determination Results

SMA 13	Functional Habitat Approach Result	Functional Habitat Approach +/- 30% Range	Relative Habitat Value Approach Result
E-r	-0.30	-0.21 to -0.39	-0.90
E-i	ND	ND	-0.30

ND = no determination of mitigation

Resulting debit refers to acres of high quality habitat to be created (i.e., Off-channel, ACM, or shallow water habitat with sand/gravel substrates and shoreline complexity)

Cost Determination Using the Functional Habitat Value Approach

LWG Developed a range of costs based on:

- |Lowest debit| x \$300,000 (assumed low mitigation cost per acre)
- |Highest debit| x \$2,000,000 (assumed high mitigation cost per acre)

Cost Range for SMA 13 Alternative E-r

0.21 x \$300,000 to 0.39 x \$2,000,000

\$63,000 to \$780,000

Cost Range for SMA 13 Alternative E-i

 $(ND) \times $300,000 \text{ to } (ND) \times $2,000,000$

\$0

Cost Determination Using the Relative Habitat Value Approach

LWG Developed a range of costs based on:

- |Lowest debit| x \$300,000 (assumed low mitigation cost per acre)
- |Highest debit| x \$2,000,000 (assumed high mitigation cost per acre)

Cost Range for SMA 13 Alternative E-r

0.90 x \$300,000 to 0.90 x \$2,000,000

\$270,000 to \$1,800,000

Cost Range for SMA 13 Alternative E-i

 $0.30 \times \$300,000 \text{ to } 0.30 \times \$2,000,000$

\$90,000 to \$600,000

